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Abstract Cloud computing has emerged as an important paradigm for deploying
services and applications for both enterprises and end-users. In this chapter, we
explore two important aspects of cloud computing – costs and security. We aim to
answer two questions: (1) Is cloud computing a cost effective endeavor? (2) How
much security can we afford in the cloud while maintaining the cost benefits of
outsourcing?

To answer these questions, we start by looking at the economics of computing
in general and clouds in particular. Specifically, we derive the end-to-end cost of a
CPU cycle in various environments and show that its cost lies between 0.5 picocents
in efficient clouds and nearly 27 picocents for small enterprises (1 picocent =
$1× 10−14), values validated against current cloud pricing. We show that cloud
computing makes sense only in scenarios when the clients distance can be offset by
a minimal application computation footprint. We then explore the cost of common
cryptography primitives as well as the viability of their deployment for cloud
security purposes. It turns out that securing outsourced data and computation against
untrusted clouds is often costlier than the associated savings, with outsourcing
mechanisms up to several orders of magnitudes costlier than their non-outsourced
locally run alternatives.

1 Introduction

As computing becomes embedded in the very fabric of our society, the exponential
growth and advances in cheap, high-speed communication allow for unprecedented
levels of global information exchange and interaction. As a result, new market forces
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emerge that propel toward a fundamental, cost-efficient paradigm shift in the way
computing is deployed and delivered: computing outsourcing.

Computing outsourcing provides great elasticity and scalability of resources.
It minimizes client-side management overheads and benefit from a service
provider’s global expertise consolidation and bulk pricing, and helps users avoid
the capital expense in acquiring computing resources. The past decades’ traditional
outsourcing paradigms have usually involved established service providers such as
IBM that manage or host clients’ machines in dedicated data centers. More recently,
first storage and then computation outsourcing has been commoditized through the
emergence of globally-sized enterprises such as Google, Yahoo, Amazon, and Sun
which started offering increasingly complex storage and computation outsourcing
“cloud” services. CPU cycles have become consumer merchandise.

So far, the end-to-end viability of cloud computing has mostly not been explored.
Is a remotely hosted computing cycle in a cloud indeed cheaper than performing it
locally when considering the end-to-end bottom-line? It seems the markets have
spoken and the increasing number of service providers can be viewed as testimony
that this indeed is the case. Yet by what margins? And what are the features of
suitable applications for cloud deployment? As the migration from in-house data
centers to the clouds is non-trivial and fraught with potentially large costs, asking
these questions is essential.

In this chapter, to understand the viability of clouds, we provide a cost model for
computing in different environments and derive the dollar cost of primitives such as
CPU cycles, storage and network transfers. Using the model, we then evaluate cloud
outsourcing end-to-end and derive a threshold principle defining when outsourcing
indeed is economically viable, i.e., when computing-related savings outweigh the
costs of networking. We then evaluate the footprints and types of applications most
suited for cloud deployment.

Despite the associated buzz, clouds have been somewhat less successful in
attracting medium to large size corporations. Such clients often fall under strict
regulatory compliance requirements for manipulating information or simply are
reluctant to place sensitive data and computation logic under the control of a remote,
third-party provider, without practical assurances of privacy and confidentiality in
which the provider is un-trusted. Significant challenges lie in the path of successful
large-scale adoption.

To address this, existing secure outsourcing research addressed several issues
including guaranteeing integrity, confidentiality and privacy of outsourced data to
secure querying on outsourced encrypted database. Such assurances will likely
require strong cryptography as part of elaborate intra- and client-cloud protocols.
Yet, strong crypto is expensive. Thus, it is important to ask: how much cryptography
can we afford in the cloud while maintaining the cost benefits of outsourcing?

Some believe the answer is simply none. For example, in an interview [56]
Whitfield Diffie argued that “current techniques would more than undo the
economy [of] outsourcing and show little sign of becoming practical.”

Here we set out to find out whether this holds and if so, by what margins. One
way to look at this is in terms of CPU cycles. For each desired un-secured client CPU
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cycle, how many additional cloud cycles can we spend on cryptography, before its
outsourcing becomes too expensive? We end up gaining the insight that today’s
secure data outsourcing primitives are often orders of magnitude more expensive
than local execution, mainly due to the fact that we do not know how to process
complex functions on encrypted data efficiently enough. And outsourcing simple
operations – such as existing research in querying encrypted data, keyword searches,
selections, projections, and simple aggregates – is simply not profitable. Thus,
while traditional security mechanisms allow the elegant handling of inter-client and
outside adversaries, today it is still too costly to secure against cloud insiders with
cryptography.

2 Cost Models

To reach the granularity of compute cycles we explore the cost of running
computing at different levels. We chose environments of increasing size: home,
small enterprises, mid-size enterprises and large size data centers. The boundaries
between these setups are often dynamic and the main reason we’re using them is to
help differentiate a set of key parameters.1

2.1 Levels

Home Users (H). We include this scenario as a baseline for a simple home setup
containing several computers. This could correspond to individuals with spare time
to maintain a small set of computers, or a very small home-based enterprise with
no staffing overheads. It is important to consider this scenario as it represents a
potentially large slice of the outsourcing market, especially through application
such as mail, document, media and personal blog/web hosting. Also this niche is
important as it features a set of peculiarities, including access to residential energy
pricing, negligible cooling, rental and management costs (as we will not factor
individuals’ time in).

Small Enterprises (S). We consider here any scenario involving an infrastructure
of up to 1,000 servers run in-house in a commercial enterprise. The cost structure
will start to feature most of the usual suspects, including commercial energy and
network pricing, cooling, space leases, staffing etc. Small enterprises however
can not afford custom hardware, efficient power-distribution, and cooling or ded-
icated buildings among others. More importantly, in addition to power distribution

1We note it is not the subject of our work to explore in-depth data center infrastructures. A plethora
of online sources discuss issues related to data centers, often focusing on power and overall
efficiency (most notably James Hamilton’s blog [27]).
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inefficiencies, due to their nature, small enterprises cannot be run at high utilization
as they would be usually under the incidence of business cycles and its associated
peak loads.

Mid-size Enterprises (M). We consider here setups of up to 10,000 servers, run
by a corporation, often in its own dedicated data center(s). Mid-size enterprises
might have some clout and access to better service deals for network service as
well as more efficient cooling and power distribution. They are not fully global,
yet could feature several centers across one or two time zones, allowing increased
independence from local load cycles as well as the ability to handle daily peaks
better by shifting loads across timezones. All the above results ultimately in
increased utilization (20–25 % est.) and overall efficiency.

Large Enterprises/Clouds (L). Clouds and large enterprises run over 10,000
servers, cross multiple time-zones, often literally at a global level, with large
data centers distributed across all continents and often in tens to hundreds of
countries. For example Google has built a 30-acre site in Dalles, Oregon, next to
a hydroelectric dam providing cheap power. The site is composed of 34,000 sqft
buildings [33]. Especially in cloud setups, high speed networks allow global-wide
distribution and integration of load from thousands of individual points of load. This
in turn flattens the 24-h overall load curve and allows for efficient peak handling
and comparably high utilization factors (50–60 % est. [28]). Cloud providers run the
most efficient infrastructures, and often are at the forefront of innovation. Moreover,
clouds have access to bulk-pricing for network service from large ISPs, often one
order of magnitude cheaper than mid-size enterprises.

2.2 Factors

We now consider the cost factors that come into play across all of the above levels.
These can be divided into a set of inter-dependent vectors, including: hardware
(servers, networking gear), building (floor space leasing), energy (running hardware
and cooling), service (administration, staffing, software maintenance), and network
service. Other breakdown layouts of these factors are possible.

Server Hardware. Hardware costs include servers, racks, power equipment, net-
work equipment, cooling equipment etc. We will discuss network equipment
later. Naturally, there are different choices for data centers to increase capacity.
Up-scaling – the purchase of a smaller number of more expensive off-the-shelf
multi-blade servers – is often considered in mid-size enterprises, and features
lower software and infrastructure cost advantages. Scaling out – deploying massive
numbers of low-cost, almost “expendable” custom-designed and often in-house built
multi-CPU server boards – is a strategy available to large, cloud-size providers such
as Google and Amazon. The advantages of this approach are low hardware costs,
low inter-failure correlation and high overall efficiency factors. Sometimes these
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two approaches can be combined; e.g., servers embedded with 4–8 CPUs can be
considered as scale-out architecture of scale-up nodes [25]. We note that these costs
drop with time, likely even by the time this goes to print. For example, while many
of the current documented mid-size deployments use single or multi-CPU System-
X blade servers at around $1–2,000 each [32], large data centers deploy custom
setups at about $3,000 for 4 CPUs, near-future developments could yield important
changes.2 We will be conservative and empirically assume home PC prices of
around $750/CPU, small and mid-size enterprise costs of around $1,000/CPU (for
2 CPU blades) and cloud-level costs of no more than $500/CPU.

Energy. Energy in data centers does not only include power, computing and net-
working hardware but the entire support infrastructure, including cooling, physical
security, and overall facilities. With the increasing density of today’s rack structure,
temperature rises more rapidly than in old server rooms [7]. For example, any
additional 40 W/sqft can lead to a rise of 25 ◦F in 10 min. A simple rough way
to infer power costs is by estimating the Power Usage Efficiency (PUE) of the data
center. The PUE is a metric to evaluate the energy efficiency of a data center [24]
(PUE=Total Power Usage/IT Equipment Power Usage). PUE ranges from 1.13 to
1.21 for big providers as claimed by Google, Facebook and 1.22 for efficient data
center containers, to over 2 for typical data centers [44,51]. We will assume 1.2–1.5
PUE for large enterprises, 1.6–2 PUE for mid-size enterprises and 2–2.5 for small
enterprises [44]. Costs of electricity are relatively uniform and documented [23].

Service. Evaluating the staffing requirements for data centers is an extremely com-
plex endeavor as it involves a number of components such as software development
and management, hardware repair, maintenance of cooling, building, network and
power services.

Analytical approaches are challenged by the sparsity of available relevant
supporting data sets. We deployed a set of commonly accepted rule of thumb
values that have been empirically developed and validate well [29]: the server to
administrator ratio varies from 2:1 up to experimental 2,500:1 values due to different
degrees of automation and data management. In deployment, small to mid-size data
centers feature a ratio of 100–140:1 whereas cloud level centers can go up to 1,000:1
[23, 28].

Network Hardware. To allow for analysis of network intensive protocols, we
chose to separate network transport service costs from the other factors of impact in
the bottom line for CPU cycle. Specifically, while the internal network infrastructure
costs will be factored in the data center costs, network service will not. We will
estimate separately the cost of transferring a bit reliably to/from the data center
intermediated by outside ISPs’ networks. Internal network infrastructure costs can
be estimated by evaluating the number of required switches and routers. The design

2In one documented instance, e.g., Amazon is working with Rackable Systems to deliver an under
$700 AMD-based 6 CPU board dubbed CEMS (Cooperative Expendable Micro-Slice Servers) V3.
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of scalable large economy network topology with high inter-node bandwidth for
data centers is an ever ongoing research problem [45]. We base our results on some
of the latest state of the art research, deploying fat tree interconnect structures. Fat
trees have been shown to offer significantly lower overall hardware costs with good
overall connectivity factors. For example inter-connecting a 27,648 node cluster
with Ethernet switching can be done for under $8.64 million [45], assuming $3,000
48-port GigE switches at the edge, aggregation and core layers.

Floor Space. Floor space costs vary wildly, by location and use. While office space
can be had for up to tens of dollars/sqft/month in Manhattan, data center space can
be had at much lower rates, being as low as $0.1/sqft/month [15,16,48]. While small
to mid-size enterprises usually have data centers near their location (thus sometimes
incurring office-level pricing), large companies such as Google and Microsoft tend
to build data centers on owned land, in less populated place where the per sqft price
can be brought down much lower, often amortized to zero over time.

We also note that floor surface is directly related to power consumption and
cooling with designs supporting anywhere from 40 to 250 W/sqft [21]. Thus, the
overall power requirements (driven by CPUs) impact directly the required floor
space.

3 Cost Primitives

Armed with knowledge of the above factors, we now estimate the cost of basic
computing primitives.

3.1 CPU Cycles

We start by evaluating the amortized dollar cost of a CPU cycle in Eq. (1). See
notations in Table 1 and various setups’ parameters in Table 2.

Table 1 Notations for
Eq. (1)

Symbol Definition

Ns,Nw Number of servers, switches
α administrator : server ratio
β W/sqft
λs,λw Server, switch price
λp,λ f Personnel, floor cost per second
λe Electricity price/(W·s)
μ CPU utilization
ν CPU frequency
τs,τw Servers, switches lifespan (5 years)
wp,wi Server power at peak, idle
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Table 2 Sample key parameters

Parameters Home Small Medium Large

CPU utilization 5–8 % 10–12 % 15–20 % 40–56 %
server:admin ratio N.A. 100–140 140–200 800–1k
Space (sqft/month) N.A. $0.5 $0.5 $0.25
PUE N.A. 2–2.5 1.6–2 1.2–1.5

Table 3 Current pricings of
a CPU cycle from major
cloud providers

Provider Picocents

Amazon EC2 0.93–2.36
Google AppEngine Up to 2.31
Microsoft Azure Up to 1.96

CycleCost =
Server+Energy+Service+Network+F loor

Total Cycles

=
λs ·Ns/τs +(wp · μ +wi · (1−μ)) ·PUE ·λe +

Ns
α ·λp +λw ·Nw/τw +λ f · (wp·μ+wi·(1−μ))·PUE

β

μ ·ν ·Ns

(1)

The results are depicted in Fig. 1, costs ranging from 0.45 picocents/cycle in very
large cloud settings all the way to (S), the costliest environment, where a cycle costs
up to 27 picocents (1 US picocent = $1× 10−14).
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Fig. 1 CPU cycle costs

We validate our results by exploring the pricing of the main cloud providers
(Table 3). The prices lie surprisingly close to each other and to our estimates,
ranging from 0.93 to 2.36 picocents/cycle. The difference in cost is due to the fact
that these points include not only CPUs but also intra-cloud networking, instance-
specific disk storage and cloud providers’ profit.
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Table 4 Summarized network service costs [28, 49]

H, S M L

Monthly $44.90 $200 $95 $13
Bandwidth (d / u) 15/5 Mbps per Mbps per Mbps
Dedicated No Yes Yes Yes
Picocent/bit 115/345 >7,000 3,665 500

Table 5 Per bit transfer costs Settings Cost (picocent)

(H, S)→ Cloud 900
(M)→ Cloud 4,500

3.2 Network Service

Published numbers place network service costs for large data centers at around
$13/Mbps/month and for mid-size setups at $95/Mbps/month [28] for guaran-
teed bandwidth. Home user and small enterprise pricing usually benefits from
economies of scale and numbers are readily available, e.g., Optimum Online
provides 15/5 Mbps internet connection for small business starting at $44.9/month.
We note however that the quoted bandwidth is not guaranteed and refers only to
the hop connecting the client to the provider. However, if home users or small
enterprises were to order guaranteed network service, the price is much higher
(around $200/Mbps/month as quoted to us by network providers.). In this work,
we mainly consider non-guaranteed network services for home users and small
enterprises. We summarize these costs in Table 4.

The end-to-end cost of network transfer includes the cost on both communicating
parties and the CPU overheads of transferring a bit from one application layer to
another (a minimum about 20 CPU cycles per 32 bit data). Moreover, for reliable
networking (e.g., TCP/IP) we need to also factor in the additional traffic and spent
CPU cycles (e.g., SYN, SYN/ACK, ACK, for connection establishment, ACKs for
sent data, window management, routing, re-transmissions, etc.). If we assume a 1 %
TCP re-transmission rate, 1 ACK packet for every two data packets, it costs more
than 900 picocents to transfer 1 bit reliably in the S→ L scenario. We summarize
the per bit transfer cost in other scenarios in Table 5.

Moreover, if the applications are not optimized to fully utilize payloads these
costs could be much higher, e.g., if only a 32 bit value payload is sent, it would
incur upwards of 10,000 picocents per bit.

3.3 Storage

Simply storing bits on disks has become truly cheap. Increased hardware reliability
(with mean time between failures rated routinely above a million hours even for
consumer markets) and economies of scale resulted in extreme drops in the costs of



Costs and Security in Clouds 39

disks. Table 6 shows the costs of ownership and operation of a representative sample
(by no means exhaustive) set of commonly available consumer-level disks (numbers
were obtained in November 2009 from numerous online sources, including the disk
vendors’ sites, price search engines and independent online hardware discussion
sites). Costs incorporate energy and amortized acquisition components. Energy
is dominating at 60–70 % of the total cost. We note that actual observed MTBF
are often up to about 3.4 times lower than advertised [53]. We considered this in
computing the values in Table 6.

In terms of amortized acquisition costs, the Seagate Barracuda provides the best
price/hardware/MTBF ratio at 7.67 picocents/bit/year. We observe that hardware
constitutes only a small percentage of the overall costs, e.g., for the Maxtor, the
amortized hardware acquisition being only 12.16 % of the overall ownership cost.
And it holds across all considered (H,S,M,L) levels due to the fact that the existence
of a critical mass of disk consumer level buyers results in economies of scale pricing
available for everybody.

This leads to the insight that, if storage power and maintenance has been already
factored in, then, for most scenarios direct storage hardware costs are very small
and can be mostly ignored when evaluating network and CPU intensive protocols.
Naturally this does not hold if the main costs include long-term data at rest with
little or no computation and networking. But, as soon as data gets transferred or
processed, direct storage costs become negligible.

4 To or Not To

The insights gained above in the costs of computation, network and storage enable
us to explore the viability of the outsourcing endeavor.

We start by noting that it is easy to find scenarios for which it does not make
sense to outsource to clouds from a strict cost-centric perspective. For example, the
CPU cycle costs in Fig. 1 immediately show that it is not profitable to outsource
personal workloads (H) to small (S) enterprises (we denote this H→ S) as it would
naturally incur additional network bandwidth and CPU cycle costs are much higher
for (S).

Yet, what about the other options, {H→M, H→ L, S→M, S→ L, M→ L}?
The answer in each of these cases is highly dependent on the type of applications

outsourced. Basically, there are three main services the cloud provides: storage,
networking and computation. The costs of these three primitives behave differently
across computing environments of different scale, thus their outsourcing costs are
different. Often the relation between these primitives in an application determines
its outsourcing saving. In the following, we explore applications of different types in
two outsourcing scenarios (single-client outsourcing and multi-client outsourcing).
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4.1 Single-Client Model

One of the simplest computation outsourcing scenarios involves clients shifting their
own CPU-intensive applications onto clouds, to save costs. Later these same clients
(or delegates thereof) will access these cloud-hosted applications for their own use.
An example of this are large corporations considering migrating in-house data
centers to clouds.

Naturally, this is feasible when the savings outweigh the outsourcing overhead
costs. In general, outsourcing a computation load from environment a to environ-
ment b is economically justified when

Savings =Cycles× ca−Cycles× cb−Transa→b ≥ 0

⇔Cycles≥ Transa→b

ca− cb
(2)

where Cycles is the number of CPU cycles needed per bit data, and cx denotes the
CPU cycle cost for environment X ∈ {H,S,M,L}. We call this the first minimal
CPU-intensive requirement criterion (we will also call this the “first outsourcing
criterion”):

First outsourcing criterion:

For an application accessed mainly by clients in environment a, outsourcing it
from a to another environment b is economically justified iff. its computation
load exceeds Transa→b

ca−cb
compute cycles per transferred input bit.

To illustrate, consider a 32 bit item in the S → L case. We know from
Sect. 3.2, that the cost of reliably transferring 32 bits can be anywhere 28,000 and
320,000 picocents depending on the nature of the connection and whether connec-
tion establishment costs are amortized across multiple sends. For consistency, we
disregard for now any application-specific costs, such as the existence of results and
their transfer costs. As a lower bound, we get

Cycles≥ TransS→L

cS− cL
∈ (1,000,12,000).

In other words, if the task at hand requires anywhere less than 1,000 CPU cycles
(in the most optimized possible case) per 32 bits of input data, it is not profitable to
outsource from a home setting to a large cloud.

Moreover, 1,000 turns out to also be a lower bound across all outsourcing options
as can be seen in Fig. 2. For H → L, we have anywhere between Cycles > 6,400
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and Cycles > 71,000. For M → L, due to the much higher network costs of (M),
32 bit transfers can cost anywhere between 144,000 and 1,615,000 picocents, which
results in anywhere between Cycles > 96,100 and Cycles > 1,070,000.

Applications which are well suited in such CPU-intensive outsourcing include
highly scientific computations [52], which usually consume large amounts of CPU.
We note that recently Mathworks seems to have tapped this niche, by adding a
parallel toolbox in Matlab which enables users to do parallel computing on the
Amazon Elastic Compute Cloud [3].

We note that the above minimal CPU-intensive requirement criterion specifically
refers to network costs that cannot be amortized over multiple transactions, hence
the wording “per transferred input bit”. Yet, often applications involve significant
amounts of already cloud-hosted data inputs, and in such cases, the criterion simply
refers to any data that is transferred to/from the cloud.

Simple Storage. Overall, the CPU-intensive requirement of the criterion suggests
that purely storage-centric applications are not good candidates for unified-client
outsourcing in the cloud. This indeed seems to hold for simple storage outsourcing
in which a single data customer places data remotely for future access. For the S→ L
scenario, the amortized cost of storing a bit reliably either locally or remotely is
under 9 picocents/month (including power). Network transfer however, is at least
900 picocents per accessed bit, a cost that is not amortized and two orders of
magnitude higher than storing the data.

Thus, from a pure technological cost-centric point of view, it is simply not
effective to store data remotely. Depending on the application network footprint,
outsourced storage costs (incl. network transfer cost) can be upwards of 2+ orders
of magnitude higher than local storage. It’s worth noticing that cloud providers also
allow users to mail a portable storage device and upload the data to the cloud over
their local network [2]. Yet, as we discussed in Sect. 3.3, simple storage without
data processing has become truly cheap even for end users. Using clouds as remote
storage is not cost efficient.



Costs and Security in Clouds 43

Searchable Storage and Databases. Scenarios where outsourcing of data
becomes viable include any data processing mechanisms that allow the amortization
of networked data transfer over multiple queries to the data set.

Consider for example a searchable outsourced database of size n which allows
queries of certain search selectivity s (search results are of size n ∗ s ∗ Sr, where
Sr is the size of a single result) to be submitted. In this case, the intuition dictates
that outsourcing is profitable for a CPU-intensive search process (e.g., for a large
database size) and a high selectivity (very low s). For illustration, if searching
involves a binary index (O(logn) CPU cycles), and a comparison takes Ccompare = 3
cycles, we have

Savings = logn×Ccompare× (ca− cb)

Costtrans = nsSrTransa→b,

and, for cost viability, we want

logn×Ccompare× (ca− cb)≥ nsBTransa→b

⇔ s≤ logn×Ccompare× (ca− cb)

nSrTransa→b

In the S→ L scenario, for a database of n = 109 keywords and Sr = 32 bits, this
results in s≤ 8.3× 10−11. And s will be even lower when database size grows.

4.2 Multi-Client Model

Yet, paradoxically, despite the above conclusion, storage outsourcing seems to be
thriving. Just recently, Smugmug, a paid digital photo sharing website, announced
$1M savings a year by outsourcing storage to Amazon S3 [1].

This can be explained as follows. The core storage costs coupled with the lack of
an intense-enough CPU load, indeed do not justify outsourcing for a unified client
scenario. Yet, web-based enterprises such as Smugmug, by their very nature provide
services to third party clients and thus also require mechanisms to handle their
clients’ remote access, e.g., through often CPU-intensive web interfaces supported
by web servers running on actual CPUs. This can increase the per-bit CPU footprint
significantly. Moreover, network service pricing for mid-size enterprises can be up
to one order of magnitude higher than for clouds, as can be seen in Table 4 – and in
effect, clouds can afford to also operate as an efficient content distribution (CDN)
service.

Overall, the case for cloud feasibility becomes more complicated in multi-client
scenarios. The outsourcing criterion needs to be updated as a function also of
the different network service deals of the two environments. Then, outsourcing is
economically tenable when

Cycles× ca−Cycles× cb+(Transc→a−Transc→b)≥ 0 (3)
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where c is the environment from which the majority of client accesses are coming to
the outsourced application (Fig. 3). Then, the outsourcing criterion can be rewritten
into a more complete (“second outsourcing criterion”) form as follows:

Second outsourcing criterion:

For an application that resides in environment a, whose accesses come mainly
from clients in environment c, outsourcing it from a to another environment b
is economically justified iff.

its computation load exceeds Transc→b−Transc→a
ca−cb

compute cycles per trans-
ferred input bit – for ca ≥ cb and Transc→a ≤ Transc→b, or,

its computation footprint is lower than Transc→a−Transc→b
cb−ca

compute cycles
per transferred input bit – for ca ≤ cb and Transc→a ≥ Transc→b

We can better understand Eq. (3) by detailing the following four cases:

(i) ca≥ cb and Transc→a≥ Transc→b, in this case, savings are constantly positive,
yielding no CPU intensive requirement;

(ii) ca ≤ cb and Transc→a ≤ Transc→b, no savings can be achieved (constantly
negative);

(iii) ca ≥ cb and Transc→a ≤ Transc→b, then Cycles≥ Transc→b−Transc→a
ca−cb

(iv) ca ≤ cb and Transc→a ≥ Transc→b, in this case, Cycles ≤ Transc→a−Transc→b
cb−ca

,
this unusual case corresponds to an upper bound on the amount of computation
an application can have before outsourcing becomes counter-productive;

We show in Fig. 3 the cost savings of S,M→ L with different third party clients
and applications at different CPU intensive levels. The CPU intensive requirements
are much lower than in the single-client model. Note, given today’s cost points, M→
L is always profitable and falls into case (i). This may also explain the success of
Smugmug outsourcing to Amazon S3. Moreover, if S requires guaranteed network
service for the application (see numbers in Table 4), S→ L also falls into case (i).

For completeness, the equation also covers cases when outsourcing occurs from
larger to smaller scale environments, as in (iv). One illustrative instance of this is a
large enterprise placing smaller data centers strategically closer to targeted clients.
Although CPU cycles will cost more in these smaller data centers, this kind of
outsourcing can effectively take advantage of its associated network proximity.

This illustrates another point of feasibility for clouds: content distribution for
applications with numerous (often geographically dispersed) clients. This is not only
profitable because of the better network service deals that clouds get from major
ISPs, but also due to their on-demand scalability promise etc., which is outside of
the scope of this chapter.

For multi-client applications such as content distribution or data processing,
it is important to consider also intra-cloud communication as well as the actual
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Fig. 3 Illustration of the cost
savings of outsourcing per
32 bit of data from a ∈ {S,M}
to b = L with c ∈ {S,M} –
with increasing computation
load – according to Eq. (3)
(corresponding to the second
outsourcing criterion). For
a = S,c = S, the CPU
intensive requirement is
410 cycles per 32 bit

Table 7 Inter- and intra-cloud network transfer pricing (picocent)

Amazon Microsoft Google

Data-in 1,164 1,164 1,164
Data-out 1,979 1,746 1,396
First 10 TB/month
Next 40 TB/month 1,513 1,746 1,396
Next 100 TB/month 1,280 1,746 1,396
Next 150 TB/month 1,164 1,746 1,396
Intra-cloud/same region 0 0 0
Intra-cloud/inter-region 116 N/A N/A

profit-including pricing of bit transfers in/out of clouds. For example, at the time of
this writing, clouds charge 1,164 picocents per incoming bit, roughly double than
what they are paying to ISPs. Table 7 illustrates these pricing points.

5 Cryptography

So far we know that a CPU cycle will set us back 0.45–27 picocents, transferring
a bit costs at least 900 picocents, and storing it costs under 100 picocents/year. We
now explore the costs of basic crypto and modular arithmetic. All values are in
picocents. Note that CPU cycles needed in cryptographic operations often vary with
optimization algorithms and types of hardware used (e.g., specialized secure CPUs
and crypto accelerators with hardware RSA engines [4] are cheaper per cycle than
general-purpose CPUs).

Symmetric Key Crypto. We first evaluate the per-bit costs of AES-128, AES-
192, AES-256 and illustrate in Table 8. The evaluation is based on results from the
ECRYPT Benchmarking of Cryptographic Systems (eBACS) [9].
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Table 8 AES-128, AES-192, AES-256 costs (per byte) on 64-byte input

AES-128 AES-192 AES-256

S 1.42E+ 03 1.48E+ 03 1.52E+ 03
L 2.37E+ 01 2.47E+ 01 2.53E+ 01

Table 9 Cost of RSA encryption/decryption on 59-byte messages (pico-
cents)

1,024 bit 2,048 bit

Encrypt Decrypt Encrypt Decrypt

S 3.74E+ 06 1.03E+ 08 8.99E+ 06 6.44E+ 08
L 6.24E+ 04 1.72E+ 06 1.50E+ 05 1.07E+ 07

Table 10 DSA on 59-byte messages. The 1,024-bit DSA uses 148-byte
secret key and 128-byte public key. The 2,048-bit DSA uses 276-byte
secret key and 256-byte public key

1,024 bit 2,048 bit

Sign Verify Sign Verify

S 5.73E+ 07 6.94E+ 07 1.89E+ 08 2.30E+ 08
L 9.55E+ 05 1.16E+ 06 3.15E+ 06 3.84E+ 06

Table 11 Costs of ECDSA signatures on 59-byte messages (curve over a
field of size 2163, 2409, 2571 respectively) (picocents)

ECDSA-163 ECDSA-409

KG/SGN Verify KG/SGN Verify

S 1.36E+ 08 2.65E+ 08 9.60E+ 08 1.91E+ 09
L 2.27E+ 06 4.41E+ 06 1.60E+ 07 3.19E+ 07

ECDSA-571

KG/SGN Verify

S 2.09E+ 09 4.18E+ 09
L 3.48E+ 07 6.96E+ 07

RSA. Numerous algorithms aim to improve the speed of RSA, mainly by reducing
the time to do modular multiplications. In Table 9, we illustrate the costs of RSA
encryption/decryption using benchmark results from [9].

PK Signatures. We illustrate costs of DSA, and ECDSA signatures based on NIST
elliptic curves [9] in Tables 10 and 11.

Cryptographic Hashes. We also show per byte cost of MD5 and SHA1 with varied
input sizes in Table 12.
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Table 12 Per-byte cost of MD5 and SHA1 (with 64- and 4,096-byte
input)

MD5 SHA1

4,096 64 4,096 64

S 1.52E+ 02 3.75E+ 02 2.14E+ 02 6.44E+ 02
L 2.53E+ 00 6.25E+ 00 3.56E+ 00 1.07E+ 01

6 Secure Outsourcing

Thus armed with an understanding of computation, storage, network and crypto
costs, we now ask whether securing cloud computing against insiders is a viable
endeavor.

We start by exploring what security means in this context. Naturally, the
traditional usual suspects need to be handled in any outsourcing environment:
(mutual) authentication, logic certification, inter-client isolation, network security
as well as general physical security. Yet, all of these issues are addressed extensively
in existing infrastructures and are not the subject of this work.

Similarly, for conciseness, within this scope, we will isolate the analysis from
the additional costs of software patching, peak provisioning for reliability, network
defenses etc.

6.1 Trust

We are concerned cloud clients being often reluctant to place sensitive data and
logic onto remote servers without guarantees of compliance to their security policies
[19, 35]. This is especially important in view of recent sub-poenas and other
security incidents involving cloud-hosted data [13, 14, 42]. The viability of the
cloud computing paradigm thus hinges directly on the issue of clients’ trust and
of major concern are cloud insiders. Yet how “trusted” are today’s clouds from this
perspective? We identify a set of scenarios.

Trusted clouds. In a trusted cloud, in the absence of unpredictable failures, clients
are served correctly, in accordance to an agreed upon service contract and the cloud
provider’s policies. No insiders act maliciously.

Untrusted clouds. For untrusted clouds, we distinguish several cases depending
on the types of illicit incentives existing for the cloud and the client policies with
which these will directly conflict. We call a cloud data-curious if insiders thereof
have incentives to violate confidentiality policies (mainly) for (sensitive) client
data. Similarly, in an access-curious cloud, insiders will aim to infer client access
patterns to data or reverse-engineer and understand outsourced computation logic.
A malicious cloud will focus mainly on (data and computation) integrity policies
and alter data or perform incorrect computation.
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Reasonable cloud insiders are likely to factor in the potential illicit gains (the
incentives to violate the policy), the penalty for getting caught, as well as the
probability of detection. Thus for most practical scenarios, insiders will engage in
such behavior only if they can get away undetected with high probability, e.g., when
no (cryptographic?) safeguards are in place to enable the detection.

6.2 Secure Outsourcing

Yet, millions of users embrace free web apps in an untrusted provider model. This
shows that today’s (mostly personal) cloud clients are willing to trade their privacy
for (free) service. This is not necessarily a bad thing, especially at this critical-mass
building stage, yet raises questions of clouds’ viability for commercial, regulatory-
compliant deployment, involving sensitive data and logic. And, from a bottom-line
cost-perspective, is it worth even trying? This is what we aim to understand here.

In the following we will assess whether clouds are economically tenable if
their users do not trust them and therefore must employ cryptography and
other mechanisms to protect their data. A number of experimental systems
and research efforts address the problem of outsourcing data to untrusted service
providers, including issues ranging from searching in remote encrypted data to
guaranteeing integrity and confidentiality to querying of outsourced data. In favor
of cloud computing, we will set our analysis in the most favorable S→ L scenario,
which yields most CPU cycle savings.

6.3 The Case for Basic Outsourcing

Before we tackle cloud security, let us look at the simplest computation outsourcing
scenario (where clients outsource data to the cloud, expect the cloud to process it,
and send the results back). In Chap. 1, we show that, to make (basic, unsecured)
outsourcing cost effective, the cost savings (mainly from cheaper CPU cycles) need
to outweigh the cloud’s distance from clients. In S→ L, outsourced tasks should
perform at least 1,000 CPU cycles per every 32 bit data, otherwise it is not worth
outsourcing them.

6.4 Encrypted Data Storage with Integrity

With an understanding of the basic boundary condition defining the viability of
outsourcing we now turn our attention to one of the most basic outsourcing scenarios
in which a single data client places data remotely for simple storage purposes. In the
S→ L scenario, the amortized cost of storing a bit reliably either locally or remotely
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is under 9 picocents/month (including power). Network transfer however, is of at
least 900 picocents per accessed bit, a cost that is not amortized and two orders of
magnitude higher.

From a technological cost-centric point of view it is simply not effective to
store data remotely: outsourced storage costs can be upwards of 2+ orders of
magnitude higher than local storage for the S→ L scenario even in the absence
of security assurances.

Cost of Security. Yet, outsourced storage providers exist and thrive. This is likely
due to factors outside of our scope, such as the convenience of being able to have
access to the data from everywhere or collaborative application scenarios in which
multiple data users share single data stores (multi-client settings). Notwithstanding
the reason, since consumers have decided it is worth paying for outsourced storage,
the next question we ask is, how much more would security cost in this context? We
first survey some of the existing work.

Several existing systems encrypt data before storing it on potentially data-curious
servers [10, 12, 43]. File systems such as I3FS [34], GFS [22], and Checksummed
NCryptfs [54] perform online real-time integrity verification.

It can be seen that two main assurances are of concern here: integrity and
confidentiality. The cheapest integrity constructs deployed in most of the above
revolve around the use of hash-based MACs. As discussed above, SHA-1 based
keyed MAC constructs with 4,096-byte blocks would cost around 4 picocent/byte
on the server and 200 picocents/byte on the client side, leading to a total cost of
about 25 picocents/bit. This is at least four times lower than the cost of storing the
bit for a year and at least one order of magnitude lower than the costs incurred by
transferring the same bit (at 900+ picocents/bit). Thus, for outsourced storage,
integrity assurance overheads are negligible.

For publicly verifiable constructs, crypto-hash chains can help amortize their
costs over multiple blocks. In the extreme case, a single signature could authenticate
an entire file system, at the expense of increased I/O overheads for verification.
Usually, a chain only includes a set of blocks.

For an average of twenty 4,096 byte blocks3 secured by a single hash-chain
signed using 1,024-bit RSA, would yield an amortized cost approximately 1 M pic-
ocents per 4,096-byte block (30+ picocents/bit) for client read verification and
180+ picocents/bit for write/signatures. This is up to 8 times more expensive than
the MAC based case.

3Douceur et al. [20], show that file sizes can be modeled using a log-normal distribution. E.g, for
μe = 8.46, σ e = 2.4 and 20,000 files, the median file size would be 4 KB, mean 80 KB, along with
a small number of files with sizes exceeding 1 GB [5, 20].
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6.5 Searches on Encrypted Data

Confidentiality alone can be achieved by encrypting the outsourced content before
outsourcing to potentially access-curious servers. Once encrypted however, it cannot
be easily processed by servers.

One of the first processing primitives that has been explored allows clients to
search directly in remote encrypted data [6, 8, 17]. In these efforts, clients either
linearly process the data using symmetric key encryption mechanisms, or, more
often, outsource additional secure (meta)data mostly of size linear in the order of the
original data set. This meta-data aids the server in searching through the encrypted
data set while revealing as little as possible.

But is remote searching worth it vs. local storage? We concluded above that
simply using a cloud as a remote file server is extremely non-profitable, up to several
orders of magnitude. Could the searching application possibly make a difference?
This would hold if either (i) the task of searching would be extremely CPU intensive
allowing the cloud savings to kick in and offset the large losses due to network
transfer, or (ii) the search is extremely selective and its results are a very small
subset of the outsourced data set – thus amortizing the initial transfer cost over
multiple searches.

We note that existing work does not support any complex search predicates
outside of simple keyword matching search. Thus the only hope there is that the
search-related CPU load (e.g., string comparison) will be enough cheaper in the
cloud to offset the initial and result transfer costs.

Keyword searching can be done in asymptotically constant time, given enough
storage or logarithmic if B-trees are used. While the client could maintain indexes
and only deploy the cloud as a file server, we already discovered that this is not
going to be profitable. Thus if we are to have any chance to benefit here, the index
structures need to also be stored on the server.

In this case, the search cost includes the CPU cycle costs in reading the B-tree
and performing binary searches within B-tree nodes. As an example, consider 32 bit
search keys (e.g., as they can be read in one cycle from RAM), and a 1 TB database.
One to three CPU cycles are needed to initiate the disk DMA per reading, and
each comparison in the binary search requires another 1–3 cycles (for executing
a comparison conditional jump operation). A B-tree with 16 KB nodes will have
approximately a 1,000 fanout and a height of 4–5, so performing a search on
this B-tree index requires about 100–300 CPU cycles. Thus in this simple remote
search, S→ L outsourcing would result in CPU-related savings of around 2,500–
8,000 picocents per access. Transferring 32 bits from S → L costs upwards of
900 picocents. Outsourced searching becomes thus more expensive for any results
upwards of 36 bytes per query.
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6.6 Insights into Secure Query Processing

By now we start to suspect that similar insights hold also for outsourced query
processing. This is because we now know that (i) the tasks to be outsourced
should be CPU-intensive enough to offset the network overhead – in other words,
outsourcing peanut counting will never be profitable, and (ii) existing confidentiality
(e.g., homomorphisms) and integrity (e.g., hash trees, aggregated signatures, hash
chains) mechanisms can “secure” only very simple basic arithmetic (addition,
multiplication) or data retrieval (selection, projection) which would cost under a few
of cycles per word if done in an unsecured manner. In other words, we do not know
yet how to secure anything more complex than peanut counting. And outsourcing of
peanut counting is counter productive in the first place. Ergo our suspicion.

We start by surveying existing mechanisms. Hacigumus et al. [26] propose a
method to execute SQL queries over partly obfuscated outsourced data to protect
data confidentiality against a data-curious server. The main functionality relies on
(i) partly obfuscating the outsourced data by dividing it into a set of partitions, (ii)
query rewriting of original queries into querying referencing partitions instead of
individual tuples, and (iii) client-side pruning of (necessarily coarse grained) results.
The information leaked to the server is balancing a trade-off between client-side
and server-side processing, as a function of the data segment size. Hore et al. [30]
explores optimal bucket sizes for certain range queries.

Ge et al. [55] discuss executing aggregation queries with confidentiality on an
untrusted server. Unfortunately, due to the use of extremely expensive homomor-
phisms this scheme leads to large processing times for any reasonably security
parameter settings (e.g., for 1,024 bit fields, 12+ days per query are required).

Other researchers have explored the issue of correctness in settings with
potentially malicious servers. In a publisher-subscriber model, Devanbu et al.
deployed Merkle trees to authenticate data published at a third party’s site [18], and
then explored a general model for authenticating data structures [39,40]. In [46,47]
as well as in [37], mechanisms for efficient integrity and origin authentication for
selection predicate query results are introduced. Different signature schemes (DSA,
RSA, Merkle trees [41] and BGLS [11]) are explored as potential alternatives for
data authentication primitives. In [36, 50] verification objects VO are deployed
to authenticate data retrieval in “edge computing” In [31, 38] Merkle tree and
cryptographic hashing constructs are deployed to authenticate range query results.

To summarize, existing secure outsourced query mechanisms deploy (i)
partitioning-based schemes and symmetric key encryption for (“statistical” only)
confidentiality, (ii) homomorphisms for oblivious aggregation (SUM, COUNT)
queries (simply too slow to be practical), (iii) hash trees/chains and (iv) signature
chaining and aggregation to ensure correctness of selection/range queries and
projection operators. SUM, COUNT, and projection usually behave linearly in the
database size. Selection and range queries may be performed in constant time,
logarithmic time or linear time depending on the queried attribute (e.g., whether it
is a primary key) and the type of index used.
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For illustration purposes, w.l.o.g., consider a scenario most favorable to out-
sourcing, i.e., assuming the operations behave linearly and are extremely selective,
only incurring two 32-bit data transfers between the client and the cloud (one for
the instruction and one for the result). Informally, to offset the network cost of
900× 32× 2 = 57,600 picocents, only traversing a database of size at least 105

will generate enough CPU cycle cost savings. Thus it seems that with very selective
queries (returning very little data) over large enough databases, outsourcing can
break even.

Cost of Security. In the absence of security constructs, we were able to build a
scenario for which outsourcing is viable. But what about a general scenario? What
are the overheads of security there? It is important to understand whether the cost
savings will be enough to offset them. While detailing individual secure query
protocols is out of scope here, it is possible to reason generally and gain an insight
into the associated order of magnitudes.

Existing integrity mechanisms deploy hash trees, hash chains and signatures to
secure simple selection, projection or range queries. Security overheads would then
include at least the (client-side) hash tree proof re-construction (O(logn) crypto-
hashes) and subsequent signature verification of the tree’s root. The hash tree
proofs are often used to authenticate range boundaries. The returned element set
is then authenticated often through either a hash chain (in the case of range joins,
at least 30 picocents per byte) or aggregated signature constructs (e.g., roughly
60,000 picocents each, for selects or projections). This involves either modular
arithmetic or crypto-hashing of the order of the result data set. For illustration
purposes, we will again favor the case for outsourcing, and assume only crypto-
hashing and a linear operation are applied.

Consider a database that has n = 109 tuples of 64 bits each. In that case (binary)
hash tree nodes need to be at least 240 bits (80+ 160 bits= 2 pointers + hash value)
long. If we assume 3 CPU cycles are needed per data item, the boundary condition
results in selectivity s ≤ 0.00037 before outsourcing starts to make economical
sense. In a more typical scenario of s = 0.001 (queries are returning 0.1 % of the
tuples), a per-query loss of over 0.3 US cents will be incurred.

The above holds only for the S→ L scenario in which hash trees are deployed. In
the case of signature aggregation [38, 47], the break-even selectivity would be even
lower due to the higher computation overheads.

7 Conclusions

In this chapter, we mused on the dollar cost and security in cloud computing. We
started by giving a cost model for computation, storage and networking in different
environments. We saw that CPU cycles cost no less than 0.45 picocents, a bit cannot
be transferred without paying at least 900 picocents, and stored a year without a
pocket setback of at least 100 picocents. We validated the cost model with today’s
pricing points of clouds.
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We determine two “outsourcing criteria”, defining the boundary condition of
cloud migration viability. The “first outsourcing criterion” considers unified client
applications and postulates that, from a technological cost-centric perspective,
outsourcing them is profitable for computation intensive tasks, specifically, when
its (mostly computation-related) cost savings are sufficient to offset client-cloud
network distances. This happens today for unified client applications requiring no
less than 1,000 CPU cycles per each 32 bits of client-cloud transferred input.

In the case of applications with third-party clients, the feasibility equation
changes dramatically. The “second outsourcing criterion” postulates that, for today’s
pricing points, for mid-size enterprises, it always makes sense to outsource to
cloud. For small enterprises, to make outsourcing profitable, the CPU intensive
requirement is much lower than in the single-client model (410 CPU cycles per
32 bit data) or even no CPU intensive requirement if they require guaranteed
network service. This is mainly because of the dominating costs of networking, and
the fact that in the single-client model, the comparison baseline would not include
any networking costs (as the data would be accessed locally).

We also explored whether cryptography can be deployed to secure cloud comput-
ing against insiders. We estimated common cryptography costs (AES, MD5, SHA-1,
RSA, DSA, and ECDSA) and finally explored outsourcing of data and computation
to untrusted clouds. We showed that deploying the cloud as a simple remote
encrypted file system is extremely unfeasible if considering only core technology
costs. We also concluded that existing secure outsourced data query mechanisms are
mostly cost-unfeasible because today’s cryptography simply lacks the expressive
power to efficiently support outsourcing to untrusted clouds. Hope is not lost
however. We found borderline cases where outsourcing of simple range queries
can break even when compared with local execution. These scenarios involve large
amounts of outsourced data (e.g., 109 tuples) and extremely selective queries which
return only an infinitesimal fraction of the original data (e.g., 0.00037 %).
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